
MYSQL

MySQL is a relational database management system based on the Structured Query Language,

which is the popular language for accessing and managing the records in the database. MySQL is

open-source and free software under the GNU license. It is supported by Oracle Company.

MySQL is a Relational Database Management System (RDBMS) software that provides many

things, which are as follows:

o It allows us to implement database operations on tables, rows, columns, and indexes.

o It defines the database relationship in the form of tables (collection of rows and columns),

also known as relations.

o It provides the Referential Integrity between rows or columns of various tables.

o It allows us to updates the table indexes automatically.

o It uses many SQL queries and combines useful information from multiple tables for the

end-users.

MySQL Working

MySQL follows the working of Client-Server Architecture. This model is designed for the end-

users called clients to access the resources from a central computer known as a server using

network services. Here, the clients make requests through a graphical user interface (GUI), and the

server will give the desired output as soon as the instructions are matched. The process of MySQL

environment is the same as the client-server model.

The core of the MySQL database is the MySQL Server. This server is available as a separate

program and responsible for handling all the database instructions, statements, or commands. The

working of MySQL database with MySQL Server are as follows:

1. MySQL creates a database that allows you to build many tables to store and manipulate

data and defining the relationship between each table.

2. Clients make requests through the GUI screen or command prompt by using specific SQL

expressions on MySQL.

3. Finally, the server application will respond with the requested expressions and produce the

desired result on the client-side.

A client can use any MySQL GUI. But, it is making sure that your GUI should be lighter and user-

friendly to make your data management activities faster and easier. Some of the most widely used

MySQL GUIs are MySQL Workbench, SequelPro, DBVisualizer, and the Navicat DB Admin Tool.

Some GUIs are commercial, while some are free with limited functionality, and some are only

compatible with MacOS. Thus, you can choose the GUI according to your needs.

MySQL Data Types

A Data Type specifies a particular type of data, like integer, floating points, Boolean, etc. It also

identifies the possible values for that type, the operations that can be performed on that type, and

the way the values of that type are stored. In MySQL, each database table has many columns and

contains specific data types for each column.

We can determine the data type in MySQL with the following characteristics:

o The type of values (fixed or variable) it represents.

o The storage space it takes is based on whether the values are a fixed-length or variable

length.

o Its values can be indexed or not.

o How MySQL performs a comparison of values of a particular data type.

Database

A database is an application that stores the organized collection of records. It can be accessed and

manage by the user very easily. It allows us to organize data into tables, rows, columns, and indexes

to find the relevant information very quickly. Each database contains distinct API for performing

database operations such as creating, managing, accessing, and searching the data it stores. Today,

many databases available like MySQL, Sybase, Oracle, MongoDB, PostgreSQL, SQL Server, etc.

SQL QUERIES

CREATE DATABASE

Here, we are going to create a database name "employeedb" using the following statement:

Syntax:

Create Database database_name;

Example:

CREATE DATABASE employeesdb;

SHOW DATABASES

We can check the created database using the following query:

SHOW DATABASES;

DROP DATABASE

Syntax:

DROP DATABASE database_name;

Example:

DROP DATABASE employeesdb;

CREATE TABLE

Syntax:

CREATE TABLE table_name (column1 datatype, column2 datatype, columnN datatype,

PRIMARY KEY (one or more columns));

Example:

CREATE TABLE CUSTOMERS (ID INT AUTO_INCREMENT, NAME VARCHAR(20) NOT

NULL, AGE INT NOT NULL, ADDRESS CHAR (25), SALARY DECIMAL (18, 2),

PRIMARY KEY (ID));

Output:

Field Type Null Key Default Extra

ID int NO PRI NULL auto_increment

NAME varchar(20) NO NULL

AGE int NO NULL

ADDRESS char(25) YES NULL

SALARY decimal(18,2) YES NULL

SHOW TABLES

SHOW TABLES command to retrieve the names of tables that are present in a specific database.

Example:

SHOW TABLES;

ALTER TABLE

ALTER command is used to modify the structure of an existing table. It allows you to make

various changes, such as adding, deleting, or modify columns within the table.

Syntax:

ALTER TABLE table_name [alter_option ...];

Example:

ALTER TABLE CUSTOMERS DROP ID;

ALTER TABLE CUSTOMERS ADD MOBILE_NO INT;

RENAME TABLES

RENAME TABLE statement is used to rename an existing table in a database with another name.

Syntax:

RENAME TABLE table_name TO new_name;

Example:

RENAME TABLE CUSTOMERS to BUYERS;

TRUNCATE TABLE

TRUNCATE TABLE statement is used to delete only the data of an existing table, but not the

table. This command helps to TRUNCATE a table completely in one go instead of deleting table

records one by one which will be very time consuming and hefty process.

Syntax:

TRUNCATE TABLE table_name;

Example:

TRUNCATE TABLE CUSTOMERS;

TRUNCATE vs DELETE

Following are some major differences between the TRUNCATE and DELETE commands, even

though they work similar logically:

DELETE TRUNCATE

The DELETE command in SQL removes one

or more rows from a table based on the

conditions specified in a WHERE Clause.

The TRUNCATE command is used to

remove all of the rows from a table,

regardless of whether or not any conditions

are met.

It is a DML(Data Manipulation Language)

command.

It is a DDL(Data Definition Language)

command.

There is a need to make a manual COMMIT

after making changes to the DELETE

command, for the modifications to be

committed.

When you use the TRUNCATE command,

the modifications made to the table are

committed automatically.

It deletes rows one at a time and applies some

criteria to each deletion.
It removes all of the information in one go.

The WHERE clause serves as the condition in

this case.

There is no necessity of using a WHERE

Clause.

All rows are locked after deletion.
TRUNCATE utilizes a table lock, which

locks the pages so they cannot be deleted.

It makes a record of each and every transaction

in the log file.

The only activity recorded is the deallocation

of the pages on which the data is stored.

It consumes a greater amount of transaction

space compared to TRUNCATE command.

It takes comparatively less amount of

transaction space.

If there is an identity column, the table identity

is not reset to the value it had when the table

was created.

It returns the table identity to a value it was

given as a seed.

It requires authorization to delete. It requires table alter permission.

When it comes to large databases, it is much

slower.
It is faster.

TRUNCATE vs DROP

The TRUNCATE and DROP are two different commands. TRUNCATE just deletes the table's

records, whereas DROP command deletes the table entirely from the database.

However, there are still some differences between these commands, which are summarized in the

following table −

DROP TRUNCATE

The DROP command in SQL removes an

entire table from a database including its

definition, indexes, constraints, data etc.

The TRUNCATE command is used to remove all

of the rows from a table, regardless of whether or

not any conditions are met and resets the table

definition.

It is a DDL(Data Definition Language)

command.

It is also a DDL(Data Definition Language)

command.

The table space is completely freed from

the memory.
The table still exists in the memory.

All the integrity constraints are removed. The integrity constraints still exist in the table.

Requires ALTER and CONTROL

permissions on the table schema and table

respectively, to be able to perform this

command.

Only requires the ALTER permissions to truncate

the table.

DROP command is much slower than

TRUNCATE but faster than DELETE.

It is faster than both DROP and DELETE

commands.

RENAME COLUMN

We can change the name of one or multiple columns of a specified table using the ALTER TABLE

RENAME COLUMN command.

Syntax:

ALTER TABLE table_name RENAME COLUMN old_column1_name TO new_column1_name,

RENAME COLUMN old_column2_name TO new_column2_name, ...;

Example:

ALTER TABLE CUSTOMERS RENAME COLUMN ID TO cust_id;

INSERT QUERIES

It is used to add data to the table.

Syntax:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN) VALUES (value1,

value2, value3,...valueN);

Example:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (1, 'Ramesh',

32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS VALUES (6, 'Komal', 22, 'Hyderabad', 4500.00), (7, 'Muffy', 24,

'Indore', 10000.00);

SELECT QUERY

SELECT command is used to fetch data from the MySQL database in the form of a result table.

These result tables are called result-sets.

Syntax:

SELECT field1, field2,...fieldN FROM table_name1, table_name2... [WHERE Clause] [OFFSET

M][LIMIT N]

Example:

FETCHING ALL THE COLUMNS FROM TABLE

SELECT * from CUSTOMERS;

FETCHING SPECIFIC COLUMNS FROM TABLE

SELECT ID, NAME, ADDRESS FROM CUSTOMERS;

UPDATE QUERY

UPDATE Query is used to modify the existing records in a table. This statement is a part of Data

Manipulation Language in SQL, as it only modifies the data present in a table without affecting

the table's structure.

Syntax:

UPDATE table_name SET field1 = new-value1, field2 = new-value2 [WHERE Clause]

Example:

UPDATE CUSTOMERS SET NAME = 'Nikhilesh' WHERE ID = 6;

DELETE QUERY

If we want to delete a record from any MySQL table, then we can use the SQL command DELETE

FROM. This statement is a part of Data Manipulation Language in SQL as it interacts with the

data in a MySQL table rather than the structure.

DELETE statement can be used to delete multiple rows of a single table and records across

multiple tables. However, in order to filter the records to be deleted, we can use the WHERE clause

along with the DELETE statement.

Syntax:

DELETE FROM table_name [WHERE Clause]

Example:

DELETE FROM CUSTOMERS WHERE ID = 1;

DELETE FROM CUSTOMERS;

VIEWS

Views are a type of virtual tables. They are stored in the database with an associated name. They

allow users to do the following −

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data in such a way that a user can see and (sometimes) modify exactly

what they need and no more.

 Summarize data from various tables which can be used to generate reports.

CREATE VIEW

Syntax:

CREATE VIEW view_name AS select_statements FROM table_name;

Example:

CREATE VIEW first_view AS SELECT * FROM CUSTOMERS;

CREATE VIEW test_view AS SELECT * FROM CUSTOMERS WHERE SALARY>3000;

FOREIGN KEY

In the relational databases, a foreign key is a field or a column that is used to establish a link

between two tables. In simple words you can say that, a foreign key in one table used to point

primary key in another table.

Syntax:

CREATE TABLE childTable (

col1 int NOT NULL,

col2 int NOT NULL,

col3 int,

………...

PRIMARY KEY (col1),

FOREIGN KEY (col3) REFERENCES parentTable(parent_Primary_key)

);

Example:

1. Creation of Parent Table DataFlair

CREATE TABLE DataFlair(

emp_id varchar(5) NOT NULL,

name varchar(50),

location varchar(50),

experience int,

PRIMARY KEY(emp_id));

2. Creation of Child Table Location

CREATE TABLE location(

location_id varchar(5) NOT NULL,

location varchar(50) NOT NULL,

office_size int,

PRIMARY KEY(location_id),

FOREIGN KEY(location) REFERENCES dataflair(location));

3. Viewing the Parent and the Child Table

A. Parent Table or the DataFlair Table

SELECT * FROM DataFlair;

B. Child Table of the Location Table:

SELECT * FROM Location;

4. Running Queries on the Parent and Child Table

Example 1: To view the name of employee, location and the location id by using both the

DataFlair and Location table.

SELECT emp_id , name,

location.location_id,DataFlair.location

FROM DataFlair RIGHT JOIN Location

ON DataFlair.location=Location.location

WHERE emp_id IS NOT NULL;

Example 2: To view the locations where we have an office of DataFlair as of now.

SELECT DISTINCT(location.location_id) AS Location_ID,

DataFlair.location AS Office_Location

FROM DataFlair RIGHT JOIN Location

ON DataFlair.location=Location.location

WHERE emp_id IS NOT NULL;

HOW TO DROP PRIMARY AND FOREIGN KEY

Syntax:

ALTER TABLE tableName

DROP PRIMARY KEY;

Example:

ALTER TABLE dataflair

DROP PRIMARY KEY;

Syntax:

ALTER TABLE tableName

DROP FOREIGN KEY foreignKeyName;

Example:

ALTER TABLE location

DROP FOREIGN KEY location;

DIFFERENCE BETWEEN PRIMARY AND FOREIGN KEY

Sr.No Primary Key Foreign Key

1
Used to maintain the unique identification

of data in the table.

Used to maintain the relationship between two or more

relational tables.

2
Helps us to identify data in a database

table.

Helps to identify the data in another table using the

connection with the foreign key.

3 A table can have only one Primary Key. A table can have any number of Foreign Keys.

4 The primary key is unique and Not Null. A foreign key can contain duplicate values also.

5 Primary key can’t take Null as a value. A foreign key can take NULL entries also.

6
Primary Key can’t be modified once

entered.
A foreign key can be modified at any instance of time.

7
We can have Primary keys for temporary

tables as well.
We can’t have Foreign keys for the temporary tables.

8 A Primary key can be defined on its own.
For defining a Foreign key, we need a parent table with

a Primary Key.

9
Primary key creates clustered indexes on

the table.

Foreign key does not create indexes on the table

neither clustered nor unclustered.

JOIN

As the name shows, JOIN means to combine something. In case of SQL, JOIN means "to combine

two or more tables". The SQL JOIN clause takes records from two or more tables in a database

and combines it together.

ANSI standard SQL defines five types of JOIN :

1. inner join,

2. left outer join,

3. right outer join,

4. full outer join, and

5. cross join.

INNER JOIN also known as simple join is the most common type of join.

Example:

1. Staff table

ID Staff_NAME Staff_AGE STAFF_ADDRESS Monthley_Package

1 ARYAN 22 MUMBAI 18000

2 SUSHIL 32 DELHI 20000

3 MONTY 25 MOHALI 22000

4 AMIT 20 ALLAHABAD 12000

2. Payment table

Payment_ID DATE Staff_ID AMOUNT

101 30/12/2009 1 3000.00

102 22/02/2010 3 2500.00

103 23/02/2010 4 3500.00

To Join these two tables

SELECT Staff_ID, Staff_NAME, Staff_AGE, AMOUNT

 FROM STAFF s, PAYMENT p

 WHERE s.ID =p.STAFF_ID;

This will produce the result like this:

STAFF_ID NAME Staff_AGE AMOUNT

3 MONTY 25 2500

1 ARYAN 22 3000

4 AMIT 25 3500

1 ARYAN 22 3000

OUTER JOIN

In the SQL outer JOIN, all the content from both the tables is integrated together. Even though

the records from both the tables are matched or not, the matching and non-matching records from

both the tables will be considered an output of the outer join in SQL.

There are three different types of outer join in SQL:

o Left Outer Join

o Right Outer Join

o Full Outer Join

Table 1: employee

EmployeeID Employee_Name Employee_Salary

1 Arun Tiwari 50000

2 Sachin Rathi 64000

3 Harshal Pathak 48000

4 Arjun Kuwar 46000

5 Sarthak Gada 62000

6 Saurabh Sheik 53000

7 Shubham Singh 29000

8 Shivam Dixit 54000

9 Vicky Gujral 39000

10 Vijay Bose 28000

Table 2: Department

DepartmentID Department_Name Employee_ID

1 Production 1

2 Sales 3

3 Marketing 4

4 Accounts 5

5 Development 7

6 HR 9

7 Sales 10

Table 3: Loan

LoanID Branch Amount

1 B1 15000

2 B2 10000

3 B3 20000

4 B4 100000

5 B5 150000

6 B6 50000

7 B7 35000

8 B8 85000

Table 4: Borrower

CustID CustName LoanID

1 Sonakshi Dixit 1

2 Shital Garg 4

3 Swara Joshi 5

4 Isha Deshmukh 2

5 Swati Bose 7

6 Asha Kapoor 10

7 Nandini Shah 9

1. Left Outer Join:

If we use the left outer join to combine two different tables, then we will get all the records from

the left table. But we will get only those records from the right table, which have the corresponding

key in the left table.

Syntax of writing a query to perform left outer join:

SELECT TableName1.columnName1, TableName2.columnName2 FROM TableName1 LEFT

OUTER JOIN TableName2 ON TableName1.ColumnName = TableName2.ColumnName;

Example 1:

Write a query to perform left outer join considering employee table as the left table and department

table as the right table.

SELECT e.EmployeeID, e.Employee_Name, e.Employee_Salary, d.DepartmentID, d.Departmen

t_Name FROM employee e LEFT OUTER JOIN department d ON e.EmployeeID = d.Employee

_ID;

Output:

EmployeeID Employee_Name Employee_Salary DepartmentID Department_Name

1 Arun Tiwari 50000 1 Production

2 Sachin Rathi 64000 NULL NULL

3 Harshal Pathak 48000 2 Sales

4 Arjun Kuwar 46000 3 Marketing

5 Sarthak Gada 62000 4 Accounts

6 Saurabh Sheik 53000 NULL NULL

7 Shubham Singh 29000 5 Development

8 Shivam Dixit 54000 NULL NULL

9 Vicky Gujral 39000 6 HR

10 Vijay Bose 28000 7 Sales

2. Right Outer Join:

Right outer join is the reverse of left outer join. If we use the right outer join to combine two

different tables, then we will get all the records from the right table. But we will get only those

records from the left table, which have the corresponding key in the right table.

Syntax of writing a query to perform right outer join:

SELECT TableName1.columnName1, TableName2.columnName2 FROM TableName1 RIGH

T OUTER JOIN TableName2 ON TableName1.ColumnName = TableName2.ColumnName;

Example 1:

Write a query to perform right outer join considering employee table as the left table and

department table as the right table.

Query:

SELECT e.EmployeeID, e.Employee_Name, e.Employee_Salary, d.DepartmentID, d.Departme

nt_Name FROM employee e RIGHT OUTER JOIN department d ON e.EmployeeID = d.Emplo

yee_ID;

Output:

EmployeeID Employee_Name Employee_Salary DepartmentID Department_Name

1 Arun Tiwari 50000 1 Production

3 Harshal Pathak 48000 2 Sales

4 Arjun Kuwar 46000 3 Marketing

5 Sarthak Gada 62000 4 Accounts

7 Shubham Singh 29000 5 Development

9 Vicky Gujral 39000 6 HR

10 Vijay Bose 28000 7 Sales

3. Full Outer Join:

If we use a full outer join to combine two different tables, then we will get all the records from

both the table,e., we will get all the records from the left table as well as the right table.

MySQL doesn't support FULL OUTER JOIN directly. So to implement full outer join in

MySQL, we will execute two queries in a single query. The first query will be of LEFT OUTER

JOIN, and the second query will be of RIGHT OUTER JOIN. We will combine the first and second

query with the UNION operator to see the results of FULL OUTER JOIN.

Syntax of writing a query to perform full outer join:

SELECT TableName1.columnName1, TableName2.columnName2 FROM TableName1 LEFT

OUTER JOIN TableName2 ON TableName1.ColumnName = TableName2.ColumnName UNI

ON SELECT TableName1.columnName1, TableName2.columnName2 FROM TableName1 R

IGHT OUTER JOIN TableName2 ON TableName1.ColumnName = TableName2.ColumnName

Example 1:

Write a query to perform full outer join considering the employee table as the left table and

department table as the right table.

Query:

SELECT e.EmployeeID, e.Employee_Name, e.Employee_Salary, d.DepartmentID, d.Departme

nt_Name FROM department d LEFT OUTER JOIN employee e ON e.EmployeeID = d.Employ

ee_ID UNION SELECT e.EmployeeID, e.Employee_Name, e.Employee_Salary, d.DepartmentI

D, d.Department_Name FROM department d RIGHT OUTER JOIN employee e ON e.Employe

eID = d.Employee_ID;

Output:

EmployeeID Employee_Name Employee_Salary DepartmentID Department_Name

1 Arun Tiwari 50000 1 Production

3 Harshal Pathak 48000 2 Sales

4 Arjun Kuwar 46000 3 Marketing

5 Sarthak Gada 62000 4 Accounts

7 Shubham Singh 29000 5 Development

9 Vicky Gujral 39000 6 HR

10 Vijay Bose 28000 7 Sales

2 Sachin Rathi 64000 NULL NULL

6 Saurabh Sheik 53000 NULL NULL

8 Shivam Dixit 54000 NULL NULL

LEFT JOIN

Join operation in SQL is used to combine multiple tables together into a single table. If we

use left join to combine two different tables, then we will get all the records from the left table.

But we will get only those records from the right table, which have the corresponding key in the

left table. Rest other records in the right table for which the common column value doesn't match

with the common column value of the left table; then, it is displayed as NULL.

Query to perform the left join operation in SQL-

SELECT TableName1.columnName1, TableName2.columnName2 FROM TableName1 LEFT J

OIN TableName2 ON TableName1.ColumnName = TableName2.ColumnName;

Example:

SELECT e.EmployeeID, e.Employee_Name, e.Employee_Salary, d.DepartmentID, d.Departmen

t_Name FROM employee e LEFT JOIN department d ON e.EmployeeID = d.Employee_ID;

Output:

EmployeeID Employee_Name Employee_Salary DepartmentID Department_Name

1 Arun Tiwari 50000 1 Production

2 Sachin Rathi 64000 NULL NULL

3 Harshal Pathak 48000 2 Sales

4 Arjun Kuwar 46000 3 Marketing

5 Sarthak Gada 62000 4 Accounts

6 Saurabh Sheik 53000 NULL NULL

7 Shubham Singh 29000 5 Development

8 Shivam Dixit 54000 NULL NULL

9 Vicky Gujral 39000 6 HR

10 Vijay Bose 28000 7 Sales

