Α

PRACTICAL FILE

ON

Theory of Computation – CS501

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF

THE DEGREE OF

BACHELOR OF TECHNOLOGY

(Computer Science & Engineering)

SUBMITTED TO

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

SUBMITTED TO :

Mr. Vineet Singh Kushwah

Asst. Professor, Dept. of CSE

IPS CTM

SUBMITTED BY:

Muskaan Dhankani

0928CS201057

III Year / V Semester

Department of Computer Science & Engineering

IPS COLLEGE OF TECHNOLOGY AND MANAGEMENT, GWALIOR DEC-2022

INDEX

S.No.	Experiments	Page	Date	Sign/
		NO.		Remarks
1.	Construct a DFA for the language L={a m b	4		
	n : m >= 0, n > 0, n is odd}. Design a DFA that			
	recognizes that language of any number of			
	a's followed by any odd number of b's.			
2.	Determine the given finite automata is	5		
	non-deterministic in nature through JFLAP.			
3.	Convert the given NFA as shown in figure	6		
	into corresponding DFA.			
	d_0 W d_1 S d_2 L d_3 R d_4			
4.	Minimize the given DFA.	7		
5.	Convert the following DFA into regular	8		
	grammar.			
6.	Convert the following DFA into regular	9		
	expression.			
7.	Convert a(b+c) [*] a to DFA. The string must	10		
	start with an 'a' which is followed by a mix			
	of b's and c's repeated in any order.			

8.	Construct a Mealy machine which takes a			11	
	binary number and replaces the first 1 with				
	a 0 from every substring starting with 1. For				
	example,	0001001110	becomes		
	000000110).			

<u>Problem</u> : Construct a DFA for the language $L=\{a m b n : m \ge 0, n \ge 0, n \ge 0, n \ge 0\}$. Design a DFA that recognizes that language of any number of a's followed by any odd number of b's.

Solution :

Input	Result
b	Accept
ab	Accept
abbb	Accept
abbba	Accept
babb	Accept
bbab	Accept
bbbabbabb	Accept

<u>Problem</u> : Determine the given finite automata is non-deterministic in nature through JFLAP.

Solution : Non-Deterministic states are highlighted

<u>Problem</u> : Convert the given NFA as shown in figure into corresponding DFA.

Solution : Minimized DFA is given below :

<u>Problem</u> : Convert the following DFA into regular grammar.

Solution :

LHS		RHS
S	\rightarrow	aS
А	\rightarrow	λ
В	\rightarrow	bA
S	\rightarrow	bA
А	\rightarrow	aB

<u>Problem</u> : Convert the following DFA into regular expression.

Solution :

(a*b(ab)*aa)*a*b(ab)*

<u>Problem</u> : Convert $a(b+c)^*a$ to DFA. The string must start with an 'a' which is followed by a mix of b's and c's repeated in any order.

Solution : The NFA of given regular expression is given below :

The DFA of given regular expression is given below :

<u>Problem</u> : Construct a Mealy machine which takes a binary number and replaces the first 1 with a 0 from every substring starting with 1. For example, 0001001110 becomes 0000000110.

Solution :

Input	Result
0111001	0011000
0001001110	000000110
111010110	011000010
100010011100	00000001100